Features

- Interval Pause: 4s to 20s
- After-wiping Time: 2s to 20s
- Wiper Motor's Park Switch
- 0.6s Prewash Delay
- Wipe/Wash Mode Priority
- One External Capacitor Determines All Time Sequences
- Relay Driver with Z-diode
- Interference Protection According to VDE 0839 or ISO/TR 7637/1
- Load-dump Protected

1. Description

The U641B is a bi-polar integrated circuit designed for the wiper application in the automotive market. It includes wipe, wash and internal mode.

2. Functional Description

As a convenience feature of the windshield wiper, intermittent and wipe/wash operation functions are implemented in most of the automobiles. The U641B is a cost-effective solution for an accurate timing function control. Wipe/wash mode has priority over interval mode. Interval pause and after-wiping time can be set to fixed values by using resistors in a broad time range. Added value can be provided with an individual, continuous adjustment of the interval pause by a potentiometer which may be built into the stalk. For proper operation, it is mandatory to feed the signal of the wiper motor's park switch into the U641B.

Figure 2-1. Block Diagram

3. Pin Configuration

Figure 3-1. \quad Pinning

Table 3-1. Pin Description

Pin	Symbol	Function
1	GND	Ground
2	INT	Interval switch
3	CT	Timing capacitor C_{2}
4	RT	After-wiping time resistance
5	WASH	Wipe/wash switch
6	PARK	Park switch for wiper motor
7	OUT	Relay control output
8	VS	Supply voltage terminal 15

4. Circuit Description

4.1 Interval Function, Pin 2

By closing the interval switch, S_{2}, to supply voltage, $\mathrm{V}_{\text {Batt }}$, the relay is activated. The internal current source (pin 3) which holds the capacitor C_{2} in charged state is switched-off. As soon as there is a positive potential at the park switch (S_{1}), current source F (see Figure 2-1 on page 2) charges the capacitor C_{2} very quickly. After the wiper operation is finished, S_{1} is again at ground potential, the relay is in the off position - interval pause begins - the capacitor C_{2} is discharged through the current source C , till the voltage at pin 3 is below the threshold of 2 V . Interval pause can be adjusted between 4 s to 20 s with the help of potentiometer R_{3}. Now the relay switches on and the next interval cycle begins. Opening switch S_{2} causes current source A to discharge C_{2} immediately and current sources C and F are switched off.

4.2 Wipe/Wash (WIWA) Operation, Pin 5

By closing the WIWA switch, S_{3}, to supply voltage, $\mathrm{V}_{\text {Batt, }}$, the water pump starts spraying the water on the windshield. During this function, the current source A is switched-off which keeps the capacitor C_{2} in a discharged state. Now the capacitor is charged through the current source F. If (after a time interval of approximately 600 ms) the voltage at the capacitor is greater than 6.1 V , the relay is turned on as long as the switch WIWA is closed.

The after-wiping time begins when the switch is open, the sources D and F are switched off and the source E is activated. Source E discharges the capacitor until the voltage is less than 2.2 V . The relay is off and the wiper-motor is supplied via the park switch until the park position is reached. The after-wiping time is determined by the current source E which can be regulated with the external resistor $\mathrm{R}_{\text {Time }}$. When the after-wiping time has elapsed, the source A discharges the capacitor. The relay switch is independent of the park switch S_{1}.

4.3 Interval and WIWA Functions

The interval function is interrupted immediately when the switch S_{2} is activated. The current source A discharges the capacitor to a value of 2 V , afterwards, the normal wash function starts.

Interval wiping starts immediately when the after-wipe time is over. The switching delays are slightly shorter, because the capacitor is already charged to a value of 2 V .

The Wipe/Wash function is not interrupted when the interval switch S_{2} is activated. The interval function begins after the WIWA function has elapsed.

Figure 4-1. Application Circuit with Interval and Wipe/Wash Operation

5. Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Parameters	Pin	Symbol	Value	Unit
Supply voltage t = 60s, terminal 15	8	$\mathrm{V}_{\text {Batt }}$	28	V
$\begin{aligned} & \text { Supply current } \\ & \mathrm{t}=2 \mathrm{~ms} \\ & \mathrm{t}=200 \mathrm{~ms} \end{aligned}$	8	$\begin{aligned} & \mathrm{I}_{8} \\ & \mathrm{I}_{8} \end{aligned}$	$\begin{aligned} & 1.5 \\ & 150 \end{aligned}$	$\begin{gathered} \mathrm{A} \\ \mathrm{~mA} \end{gathered}$
Relay control output current (DC) $\mathrm{t}=200 \mathrm{~ms}$	7	$\begin{aligned} & \mathrm{I}_{7} \\ & \mathrm{I}_{7} \end{aligned}$	$\begin{gathered} 200 \\ 1.2 \end{gathered}$	$\begin{gathered} \mathrm{mA} \\ \mathrm{~A} \end{gathered}$
Pulse Current (Control Inputs) t=200 ms				
Park switch, S_{1} Wipe/Wash switch, S_{3} Interval switch, S_{2}	$\begin{aligned} & 6 \\ & 5 \\ & 2 \end{aligned}$	$\begin{aligned} & I_{6} \\ & I_{5} \\ & I_{2} \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \end{aligned}$	mA
Power dissipation $\mathrm{T}_{\text {amb }}=90^{\circ} \mathrm{C}$		$\mathrm{P}_{\text {tot }}$	500	mW
Storage temperature range		$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$
Ambient temperature range		$\mathrm{T}_{\text {amb }}$	-40 to +85	${ }^{\circ} \mathrm{C}$

6. Thermal Resistance

Parameters		Symbol	Value	Unit
Junction ambient	DIP8	$\mathrm{R}_{\text {thJA }}$	120	$\mathrm{~K} / \mathrm{W}$
	SO8	$\mathrm{R}_{\mathrm{thJA}}$	160	$\mathrm{~K} / \mathrm{W}$

7. Electrical Characteristics

$V_{\text {Batt }}=12 \mathrm{~V}, \mathrm{~T}_{\text {amb }}=25^{\circ} \mathrm{C}$, reference point is pin 8 (see Figure 4-1 on page 5) unless otherwise specified.

Parameters	Test Conditions	Pin	Symbol	Min.	Typ.	Max.	Unit
Supply voltage		8	$\mathrm{V}_{\text {Batt }}$	9		16.5	V
Supply current			I_{8}		10		mA
Z-diode limitation			V_{1}		7.6		V
Overvoltage							
Threshold current			11		-50		mA
Threshold voltage			$\mathrm{V}_{\text {Batt }}$		35		V
Relay Control Output							
Saturation voltage	$\begin{aligned} & \mathrm{I}_{7}=100 \mathrm{~mA} \\ & \mathrm{I}_{7}=200 \mathrm{~mA} \end{aligned}$		V_{7}			$\begin{aligned} & \hline-1.0 \\ & -1.5 \end{aligned}$	V
Leakage current			I_{7}		100		$\mu \mathrm{A}$
Park Switch 6							
Internal pull-up resistance	$\mathrm{R}_{6}=10 \mathrm{k} \Omega$		R_{6}		50		$\mathrm{k} \Omega$
Switching threshold voltage			V_{6}		-3.3		V
Protection diode	$\begin{aligned} & \mathrm{I}_{6}=-10 \mathrm{~mA} \\ & \mathrm{I}_{6}=10 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & V_{6} \\ & V_{6} \end{aligned}$		$\begin{gathered} \hline-0.8 \\ 7.6 \end{gathered}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Input $\mathrm{C}_{\text {t }}$							
Internal resistance			R_{3}		100		Ω
Interval Input	$\mathrm{R}_{2}=2.7$ to $30 \mathrm{k} \Omega$						
Protection diode	$\begin{aligned} & \mathrm{I}_{2}=-10 \mathrm{~mA} \\ & \mathrm{I}_{2}=30 \mathrm{~mA} / 10 \mathrm{~ms} \end{aligned}$		V_{2}		$\begin{gathered} \hline-0.8 \\ 7.6 \\ \hline \end{gathered}$		V
WASH Input	$\mathrm{R}_{5}=10 \mathrm{k} \Omega$	5					
Switching threshold/ Hysteresis			V_{5}		$\begin{gathered} \hline-1.4 / \\ -5.4 \end{gathered}$		V
Protection diode	$\begin{aligned} & \mathrm{I}_{5}=-10 \mathrm{~mA} \\ & \mathrm{I}_{5}=10 \mathrm{~mA} \end{aligned}$		V		$\begin{gathered} \hline-0.8 \\ 7.6 \end{gathered}$		V
Switching Characteristics $\quad \mathrm{R}_{4}=47 \mathrm{k} \Omega$ to $300 \mathrm{k} \Omega, \mathrm{I}_{4}=-150 \mu \mathrm{~A}$							
Interval time	$\begin{aligned} & \mathrm{R}_{3}=0 \mathrm{k} \Omega \\ & \mathrm{R}_{3}=10 \mathrm{k} \Omega \end{aligned}$		t_{2}	$\begin{gathered} \hline 3.6 \\ 10.8 \end{gathered}$	$\begin{gathered} 4 \\ 12 \end{gathered}$	$\begin{gathered} \hline 4.4 \\ 13.2 \end{gathered}$	S
Prewash delay			$t_{\text {del }}$		600		ms
After-wipe-time	$\mathrm{R}_{4}=130 \mathrm{k} \Omega$	5	t_{5}	4.75	5.25	5.75	S

8. Diagrams

Figure 8-1. \quad Interval Pause $=f(T) ; C_{t}=22 \mu F$

Figure 8-2. \quad After-wiping Time $=f(T) ; C_{t}=22 \mu F ; V_{\text {Batt }}=8 \mathrm{~V}$

Figure 8-3. \quad Prewash Time $=f(T) ; C_{t}=22 \mu F$

Figure 8-4. Interval Pause $=f\left(R_{I N T}\right) ; C_{t}=22 \mu F$

Figure 8-5. \quad After-wiping Time $=f(T) ; C_{t}=22 \mu F ; V_{\text {Batt }}=16 \mathrm{~V}$

9. Ordering Information

Extended Type Number	Package	Remarks
U641B-MY	DIP8	Pb-free
U641B-MFPY	SO8	Tubed, Pb-free
U641B-MFPG3Y	SO8	Taped and reeled, Pb-free

10. Package Information

Package: DIP8
Dimensions in mm

Drawing-No.: 6.543-5040.01-4
Issue: 1; 16.01.02

Package: SO 8
Dimensions in mm

technical drawings according to DIN specifications

Drawing-No.: 6.541-5031.01-4
Issue: 1; 15.08.06

11. Revision History

Please note that the following page numbers referred to in this section refer to the specific revision mentioned, not to this document.

Revision No.	History
	- Put datasheet in a new template - Pb-free logo on page 1 deleted
$4773 \mathrm{C}-$ AUTO-10/07	- Figure 8-1 "Interval Pause $=\mathrm{f}(\mathrm{T}) ; \mathrm{C}_{\mathrm{t}}=22 \mu \mathrm{~F}$ " on page 8 changed - Figure 8-2 "After-wiping Time $=\mathrm{f}(\mathrm{T}) ; \mathrm{C}_{\mathrm{t}}=22 \mu \mathrm{~F} ; \mathrm{V}_{\text {Batt }}=8 \mathrm{~V}$ " on page 8 changed - Figure 8-3 "After-wiping Time $=\mathrm{f}(\mathrm{T}) ; \mathrm{C}_{\mathrm{t}}=22 \mu \mathrm{~F} ; \mathrm{V}_{\text {Batt }}=16 \mathrm{~V}$ " on page 9 changed
4773B-AUTO-09/05	- Put datasheet in a new template - Pb-free logo on page 1 added - Ordering Information on page 10 changed

Headquarters

Atmel Corporation

2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

International

Atmel Asia	Atmel Europe	Atmel Japan
Room 1219	Le Krebs	9F, Tonetsu Shinkawa Bldg.
Chinachem Golden Plaza	8, Rue Jean-Pierre Timbaud	1-24-8 Shinkawa
77 Mody Road Tsimshatsui	BP 309	Chuo-ku, Tokyo 104-0033
East Kowloon	78054	Japan
Hong Kong	Saint-Quentin-en-Yvelines Cedex	Tel: (81) 3-3523-3551
Tel: (852) 2721-9778	France	Fax: (81) 3-3523-7581
Fax: (852) 2722-1369	Tel: (33) 1-30-60-70-00	

Product Contact

Web Site	Technical Support auto_control@atmel.com	Sales Contact www.atmel.com/contacts
Literature Requests		
www.atmel.com/literature		

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.
© 2007 Atmel Corporation. All rights reserved. Atmel ${ }^{\circledR}$, logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

